
The Ynot Tutorial

Adam Chlipala

July 27, 2009

CHAPTER 1. INTRODUCTION July 27, 2009 � 1

Chapter 1

Introduction

Ynot is a library for the Coq proof assistant. Besides supporting mathematical theorem
proving, Coq natively supports general functional programming, as its logic is an ML-like
programming language. To preserve logical consistency, Coq's language Gallina rules out
non-termination and side e�ects. Ynot adds those features in a controlled way, so that pro-
grams may be impure, while proofs remain pure and logically meaningful. Ynot goes further,
combining the new impure constructs with a Hoare-style logic for proving the correctness of
programs, including support for reasoning in the style of separation logic.

The basic approach stands in direct analogy with the way in which imperative features
were added to Haskell. Haskell's IO monad rei�es imperative programs as data that may be
constructed by pure programs. Purity and referential transparency are preserved, as some
system outside the scope of the language is responsible for "running" IO values. The situation
is the same in Ynot. We de�ne an indexed monad of impure programs, via uninterpreted Coq
axioms. Coq's extraction facility can be used to translate programs that use these axioms
into OCaml, Haskell, or Scheme programs. In these languages, the axioms can be realized
via standard implementations of IO-style monads.

The Ynot library is designed to support e�ective engineering of certi�ed programs. We
include tactics that are able to automate much of reasoning about mutable heaps. Within
that general framework, the user can plug in his own domain-speci�c tactics.

We will present the basics of the Ynot library through a series of examples. We assume
that the reader is already familiar with programming and proving in Coq. There are a
number of possible sources for this backround knowledge, including this draft textbook by
the author of this tutorial:

http://adam.chlipala.net/cpdt/

CHAPTER 2. MUTABLE COUNTERS July 27, 2009 � 2

Chapter 2

Mutable Counters

Our �rst example is trivial, designed to introduce the main features of Ynot. We will imple-
ment imperative natural number counters. First, we import the Ynot library.

Require Import Ynot.

For this to work, the compiled Ynot modules must be in the module path. Those modules
can be compiled simply by running make in the root directory of the Ynot distribution. In
a batch build of a �le like the one we are writing here, the path to the Ynot library may be
speci�ed like:

coqc -R /path/to/ynot/src Ynot Counter.v

For interactive Emacs development with Proof General, it is useful to add a variable
setting like this in your .emacs �le.

(custom-set-variables

'(coq-prog-args '("-R" "/path/to/ynot/src" "Ynot"))

)

With such a setting, you should be able to execute the Require Import line without
complaint. Afterward, we open a notation scope, to enable use of concise notations for
assertions about heaps.

Open Local Scope hprop scope.

Next, we write a module signature that de�nes the ADT (abstract data type) of mutable
counters.

Module Type COUNTER.
Parameter t : Set.
Parameter rep : t → nat → hprop.

A counter has type t. In ML, an abstract type within a module usually enforces proper
usage implicitly, where the set of values that may be constructed is limited strategically

CHAPTER 2. MUTABLE COUNTERS July 27, 2009 � 3

through the choice of which methods to export. With mutable data structures in Ynot, this
regime will not generally be enough. Instead, we employ an additional design pattern of
representation predicates, as illustrated by rep in this example. A representation predicate
takes a value of the ADT as an argument, and it usually also takes one or more other values
that stand for a pure functional model of the imperative value. The type hprop stands for
predicates over heaps. Thus, for a counter c and its pure functional model n, rep c n stands
for the set of heaps that are consistent with the assumption that c represents n.

We see these parameters in use in the type of the counter new operation.

Parameter new : Cmd (fun c : t ⇒ rep c 0).

This type uses the Cmd type family, our main parameterized monad. The two explicit
arguments are a precondition and a postcondition for this method, in the tradition of Hoare
logic. The precondition describes an empty heap, and the postcondition fun c ⇒ rep c 0
says that, if method execution terminates with a counter c, then c represents 0 in the �nal
heap.

The name Cmd alludes to the foundation of this type family in separation logic, following
the small footprint approach to speci�cation. The new method does not actually require
that the heap be empty when the method is called. Rather, the pre- and postconditions
only specify the method's e�ects on the part of the heap that the method touches. We will
see later how this property can be put to use in veri�cation.

The free method has a similar type, but it uses one new feature.

Parameter free : ∀ (c : t) (n : [nat]), Cmd (n �� rep c n) (fun : unit ⇒).

We write the type nat in brackets to indicate that that method argument is computationally

irrelevant. That is, n is a so-called "ghost state" argument, used only to help us prove the
correctness of this method. The compiled version of this program will not contain n. In the
precondition of free, we use the notation n �� p, where p is an hprop that may mention spec
variable n. Each spec variable that an assertion uses must be unpacked explicitly in this
way.

The type of the method for reading a counter's value introduces two more new assertion
constructs.

Parameter get : ∀ (c : t) (n : [nat]), Cmd (n �� rep c n)
(fun n' ⇒ n �� rep c n * [n' = n]).

In the postcondition, we see a sub-assertion [n' = n]. This is a lifted pure proposition; the
assertion is true whenever n' = n and the heap is empty. We combine that pure assertion
with rep c n using the separating comjunction *. An assertion p * q is true for heap h

whenever h can be split into two disjoint pieces h1 and h2, such that h1 satis�es p and h2

satis�es q.

Now the type of the counter increment method should be unsurprising.

Parameter inc : ∀ (c : t) (n : [nat]), Cmd (n �� rep c n)

CHAPTER 2. MUTABLE COUNTERS July 27, 2009 � 4

(fun : unit ⇒ n �� rep c (S n)).
End COUNTER.

We can implement a module ascribing to this signature. Since the types of the methods
include speci�cations, we know that any implementation is correct, up to the level of detail
that we included in the signature.

Module Counter : COUNTER.
De�nition t := ptr.
De�nition rep (p : t) (n : nat) := p �> n.

We represent a counter with the ptr type. Unlike ML ref types, Ynot pointer types don't
carry information on the types of data that they point to. Rather, we rely on typed points-
to facts within assertions. We see an example in the de�nition of rep: a counter-pointer p
represents a number n if p points to heap memory containing n.

Since our method types contain speci�cations, we will need to do some proving to de�ne
the methods. We de�ne a simple tactic t that is able to dispatch all of the proof obligations
we will encounter.

Ltac t := unfold rep; sep fail idtac.

We replace uses of rep by unfolding its de�nition, and we call the sep tactic from the
Ynot library. sep is intended as a separation logic version of Coq's intuition tactic, which
simpli�es formulas of constructive propositional logic. We have no theoretical completeness
guarantees for sep, but usage patterns are roughly the same. Just as intuition takes an
optional argument giving a tactic to apply in solving leaves of its proof search, sep takes two
domain-speci�c tactics as arguments. In later examples, we will see more interesting choices
for those tactics.

Before we begin programming, we open another scope, this time to let us write ML-like
syntax for Ynot programs.

Open Scope stsepi scope.

We implement the new method by declaring it as a proof search goal, so that we can use
tactics to discharge the obligations that we will generate.

De�nition new : Cmd (fun c ⇒ rep c 0).
re�ne {{New 0}}; t.

Qed.

The re�ne tactic is the foundation of our implementation. In general, re�ne takes a term
with holes in it, solving the current goal and adding the types of the holes as subgoals. There
are holes in the term we pass to re�ne in de�ning new, but they are hidden by the Ynot
syntax extensions. We write double braces around a Ynot program to indicate simultaneous
strengthening of the precondition and weakening of the postcondition. We chain our tactic
t onto the re�ne, so that t is applied to discharge every subgoal.

It is instructive to see exactly which subgoals are being proved for us.

CHAPTER 2. MUTABLE COUNTERS July 27, 2009 � 5

De�nition new' : Cmd (fun c ⇒ rep c 0).
re�ne {{New 0}}.
2 subgoals

============================
==> ?504 *

subgoal 2 is :
∀ v : ptr, ?504 * v �> 0 ==> rep v 0

The �rst subgoal corresponds to strengthening the precondition; we see an implication
between our stated precondition and the precondition that Coq inferred. We are trying to
write a function with precondition , while Coq has �gured out that our implementation
could actually be given any precondition. That fact shows up in the form of the second
assertion, which is a uni�cation variable conjoined with the empty heap, which is logically
equivalent to that uni�cation variable alone.

The same uni�cation appears to the left of an implication in the second subgoal, which
comes from weakening the postcondition. Where v is the method return value, we must
show that any heap with some unknown part and some part containing just a mapping of v
to 0 can be described by the appropriate instance of rep. In our automated script above, the
uni�cation variable had already been determined to be by this point, so that this goal
can be proved by re�exivity of implication.

For the rest of this and the other examples, we won't show the obligations that are
generated. You will no doubt need to inspect such obligations in writing your own Ynot
programs, so it may be useful to play with the proof scripts in this tutorial, to see which
obligations are generated and experiment with manual means of discharging them.

Abort.

The remaining method de�nitions are (perhaps surprisingly) quite straightforward. We use
ML-style operators for working with pointers, writing pre�x ! for reading and in�x ::= for
writing. We use Haskell-style ← notation for the monad "bind" operator.

De�nition free : ∀ c n, Cmd (n �� rep c n) (fun : unit ⇒).
intros ; re�ne {{Free c}}; t.

Qed.

De�nition get : ∀ c n, Cmd (n �� rep c n) (fun n' ⇒ n �� rep c n * [n' = n]).
intros ; re�ne {{!c}}; t.

Qed.

De�nition inc : ∀ c n, Cmd (n �� rep c n) (fun : unit ⇒ n �� rep c (S n)).
intros ; re�ne (
n' ← !c;
{{c ::= S n'}}

); t.

CHAPTER 2. MUTABLE COUNTERS July 27, 2009 � 6

Qed.
End Counter.

CHAPTER 3. MUTABLE STACKS July 27, 2009 � 7

Chapter 3

Mutable Stacks

Our next example demonstrates one of the simplest imperative data structures that really
deserves the name: polymorphic mutable stacks.

Require Import List.
Require Import Ynot.
Set Implicit Arguments.
Open Local Scope hprop scope.

Module Type STACK.
Parameter t : Set → Set.
Parameter rep : ∀ T, t T → list T → hprop.

Compared to the COUNTER example, our new type t di�ers in being polymorphic in the
type of data that we store. The representation predicate is parameterized similarly, and we
set the convention that the functional model of a T stack is a T list.

The �rst three stack methods don't involve any new concepts.

Parameter new : ∀ T : Set,
Cmd (fun s : t T ⇒ rep s nil).

Parameter free : ∀ (T : Set) (s : t T),
Cmd (rep s nil) (fun : unit ⇒).

Parameter push : ∀ (T : Set) (s : t T) (x : T) (ls : [list T]),
Cmd (ls �� rep s ls) (fun : unit ⇒ ls �� rep s (x :: ls)).

The type of the pop method demonstrates two important patterns. First, we can use arbitrary
Coq computation in calculating a precondition or postcondition. Our pop method returns
an option T, which will be None when the stack is empty. We use Coq's standard match

expression form to case-analyze this return value, returning a di�erent assertion for each
case. The Some case uses an hprop version of the standard existential quanti�er.

Parameter pop : ∀ (T : Set) (s : t T) (ls : [list T]),
Cmd (ls �� rep s ls)
(fun xo : option T ⇒ ls �� match xo with

CHAPTER 3. MUTABLE STACKS July 27, 2009 � 8

| None ⇒ [ls = nil] * rep s ls

| Some x ⇒ Exists ls' :@ list T, [ls = x :: ls']
* rep s ls'

end).
End STACK.

Module Stack : STACK.

We use Coq's section mechanism to scope the type variable T over all of our de�nitions.

Section Stack.
Variable T : Set.

Record node : Set := Node {
data : T ;
next : option ptr

}.

We can use a recursive hprop-valued function to de�ne what it means for a particular list to
be represented in the heap, starting from a particular head pointer.

Fixpoint listRep (ls : list T) (hd : option ptr) {struct ls} : hprop :=
match ls with

| nil ⇒ [hd = None]
| h :: t ⇒ match hd with

| None ⇒ [False]
| Some hd ⇒ Exists p :@ option ptr, hd �> Node h p * listRep t p

end

end.

As in the Counter example, we represent a stack as an untyped pointer, and we rely on the
rep predicate to enforce proper typing of associated heap cells.

De�nition stack := ptr.
De�nition rep q ls := Exists po :@ option ptr, q �> po * listRep ls po.

We de�ne a tactic that will be useful for domain-speci�c goal simpli�cation. In larger
examples, such a tactic de�nition would probably be signi�cantly longer. Here, we only
need to ask Coq to try solving goals by showing that they are contradictory, because two
equated values of a datatype are built from di�erent constructors.

Ltac simplr := try discriminate.

A key component of e�ective Ynot automation is the choice of appropriate domain-speci�c
unfolding lemmas. Such a lemma characterizes how an application of a representation pred-
icate may be decomposed, when something is known about the structure of the arguments.
Our �rst simple unfolding lemma says that any functional list represented by a null pointer
must be nil. sep can complete the proof after we begin with a case analysis on the list.

Theorem listRep None : ∀ ls, listRep ls None ==> [ls = nil].

CHAPTER 3. MUTABLE STACKS July 27, 2009 � 9

destruct ls ; sep fail idtac.
Qed.

A slightly more complicated lemma characterizes the shape of a list represented by a non-null
pointer. Here we put our simplr tactic to use as the second argument to sep. In general,
the tactic given as that second argument is tried throughout proof search, in attempts to
discharge goals that the separation logic simpli�er can't prove alone.

Theorem listRep Some : ∀ ls hd,
listRep ls (Some hd) ==> Exists h :@ T, Exists t :@ list T, Exists p :@ option ptr,
[ls = h :: t] * hd �> Node h p * listRep t p.

destruct ls ; sep fail simplr.
Qed.

With these lemmas available, we are ready to de�ne a tactic that will be passed as the �rst
argument to sep. The tactic in that position is used to simplify the goal before beginning
the main proof search. The tactic simp prem will perform that function for us.

Ltac simp prem :=
simpl IfNull ;
simpl prem ltac:(apply listRep None || apply listRep Some).

The simpl IfNull tactic comes from the Ynot library. It simpli�es goal patterns that arise
from a syntax extension that we will see shortly. The more interesting part of simp prem

is the call to simpl prem, another tactic from the library. simpl prem t looks for premises
(sub-formulas on the left of implications) that can be simpli�ed by the tactic t. Here, we try
to simplify by applying either of our unfolding lemmas.

With these pieces in place, we de�ne a �nal t solver tactic by dropping our two parameters
into the version that we used for Counter.

Ltac t := unfold rep; sep simp prem simplr.

Open Scope stsepi scope.

The �rst three method de�nitions are quite simple and use no new concepts.

De�nition new : Cmd (fun s ⇒ rep s nil).
re�ne {{New (@None ptr)}}; t.

Qed.

De�nition free : ∀ s, Cmd (rep s nil) (fun : unit ⇒).
intros ; re�ne {{Free s}}; t.

Qed.

De�nition push : ∀ s x ls, Cmd (ls �� rep s ls) (fun : unit ⇒ ls �� rep s (x :: ls)).
intros ; re�ne (hd ← !s ;
nd ← New (Node x hd);
{{s ::= Some nd}}

); t.

CHAPTER 3. MUTABLE STACKS July 27, 2009 � 10

Qed.

The de�nition of pop introduces the IfNull syntax extension. An expression IfNull x Then

e1 Else e2 expands to a test on whether the variable x of some option type is null. If x is
None, then the result is e1. If x is Some y, then the result is e2, with all occurrences of x
replaced by y.

De�nition pop : ∀ s ls,
Cmd (ls �� rep s ls)
(fun xo ⇒ ls �� match xo with

| None ⇒ [ls = nil] * rep s ls

| Some x ⇒ Exists ls' :@ list T, [ls = x :: ls']
* rep s ls'

end).
intros ; re�ne (hd ← !s ;
IfNull hd Then

{{Return None}}
Else

nd ← !hd ;
Free hd ;;
s ::= next nd ;;
{{Return (Some (data nd))}}); t.

Qed.
End Stack.

Finally, since the signature makes the type t polymorphic, we de�ne a trivial wrapper that
discards the type paramter.

De�nition t (: Set) := stack.
End Stack.

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 11

Chapter 4

Mutable Queues

Mutable queues take a bit more work to implement than mutable stacks do, because we need
to consider the manipulation of linked lists at both their fronts and their backs.

Require Import List.
Require Import Ynot.
Set Implicit Arguments.
Open Local Scope hprop scope.

Module Type QUEUE.
The �rst four components are identical to those from STACK.

Parameter t : Set → Set.
Parameter rep : ∀ T, t T → list T → hprop.

Parameter new : ∀ T,
Cmd (fun q : t T ⇒ rep q nil).

Parameter free : ∀ T (q : t T),
Cmd (rep q nil) (fun : unit ⇒).

The type of the enqueue method is a little more complicated than push's type, since we
model enqueueing as addition to the end of a list.

Parameter enqueue : ∀ T (q : t T) (x : T) (ls : [list T]),
Cmd (ls �� rep q ls) (fun : unit ⇒ ls �� rep q (ls ++ x :: nil)).

The speci�cation for dequeue is equivalent to the stack pop spec; we write it di�erently with
the structure of our correctness proofs in mind.

Parameter dequeue : ∀ T (q : t T) (ls : [list T]),
Cmd (ls �� rep q ls) (fun xo ⇒ ls �� match xo with

| None ⇒ [ls = nil] * rep q ls

| Some x ⇒
match ls with

| nil ⇒ [False]
| x' :: ls' ⇒ [x' = x] * rep q ls'

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 12

end

end).
End QUEUE.

Module Queue : QUEUE.
The implementation begins the same way as for Stack, declaring a type parameter and
de�ning a type of singly-linked list nodes.

Section Queue.
Variable T : Set.

Record node : Set := Node {
data : T ;
next : option ptr

}.

To allow us to describe a list with special focus on its last element, we de�ne an alternate
list representation, this time parameterized on both head and tail nodes.

Fixpoint listRep (ls : list T) (hd tl : ptr) {struct ls} : hprop :=
match ls with

| nil ⇒ [hd = tl]
| h :: t ⇒ Exists p :@ ptr, hd �> Node h (Some p) * listRep t p tl

end.

A queue itself is a pair of pointers to the �rst and last nodes in the list. When the queue is
empty, each pointer will point to a null pointer.

Record queue : Set := Queue {
front : ptr ;
back : ptr

}.

We make a �nal auxiliary de�nition before rep, parameterizing it by the functional list and
the values pointed to by the front and back pointers, rather than by the queue and the list.

De�nition rep' ls fr ba :=
match fr, ba with

| None, None ⇒ [ls = nil]
| Some fr, Some ba ⇒ Exists ls' :@ list T, Exists x :@ T,
[ls = ls' ++ x :: nil] * listRep ls' fr ba * ba �> Node x None

| , ⇒ [False]
end.

Now it's easy to de�ne rep. We quantify existentially over the values pointed to by the queue
�elds and appeal to rep'.

De�nition rep q ls := Exists fr :@ option ptr, Exists ba :@ option ptr,
front q �> fr * back q �> ba * rep' ls fr ba.

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 13

We de�ne a short simpli�cation tactic that we will plug into sep as its second argument. We
constructed this code by iterating interactively with the method de�nitions that follow. We
won't discuss the details of simplr any further, but you can try commenting out parts of it
to see what parts of later code fail.

Ltac simplr := repeat (try congruence;
match goal with

| [x : option ptr `] ⇒ destruct x

| [H : Some = Some `] ⇒ injection H ; clear H ; intros ; subst
| [H : nil = ?ls ++ :: nil `] ⇒ destruct ls ; discriminate

end);
eauto.

We have an unfolding lemma analogous to the �rst one that we saw for Stack.

Lemma rep nil : ∀ q,
rep q nil ==> front q �> @None ptr * back q �> @None ptr.
unfold rep; sep fail simplr.

Qed.

Another simple lemma gives a simpli�cation rule for a queue whose back pointer is known
to be non-null, corresponding to the second unfolding lemma from Stack.

Lemma rep' Some2 : ∀ ls o1 ba,
rep' ls o1 (Some ba) ==> Exists ls' :@ list T, Exists x :@ T, Exists fr :@ ptr,
[ls = ls' ++ x :: nil] * [o1 = Some fr] * listRep ls' fr ba * ba �> Node x None.

unfold rep' ; sep fail simplr.
Qed.

One more unfolding lemma is critical to automating our proofs. We need to simplify cases
where the front pointer is non-null. This is tricky because our de�nition of listRep is oriented
towards decomposing the list from the back. As a prelude to our �nal lemma, we prove some
facts about pure lists. These facts could pro�tably be added to a generic list library. Some
of these lemmas may seem confusingly trivial; we prove them so that they may be used as
auto hints.

Lemma app nil middle : ∀ (x1 x2 : T),
x1 :: x2 :: nil = x1 :: nil ++ x2 :: nil.
re�exivity.

Qed.

Lemma app nil middle' : ∀ (x1 x2 x3 : T) ls,
x1 :: x2 :: ls ++ x3 :: nil = x1 :: (x2 :: ls) ++ x3 :: nil.
re�exivity.

Qed.

Lemma list cases : ∀ ls : list T,
ls = nil

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 14

∨ (∃ x, ls = x :: nil)
∨ (∃ x1, ∃ ls', ∃ x2, ls = x1 :: ls' ++ x2 :: nil).
Hint Immediate app nil middle app nil middle'.

induction ls ; simpl ; �rstorder ; subst ; eauto 6.
Qed.

Lemma app inj tail' : ∀ (x1 : T) ls' x2 v v0,
x1 :: ls' ++ x2 :: nil = v ++ v0 :: nil
→ x1 :: ls' = v ∧ x2 = v0.
intros ; apply app inj tail ; assumption.

Qed.

Implicit Arguments app inj tail' [x1 ls' x2 v v0].

Finally, we come to the unfolding lemma we need. Again, it has a completely automated
proof. We will not go into detail on how we arrived at this proof script; design was again
driven by iteration with the code to follow. You can try omitting parts of this script or
breaking it into stages to get a better idea of what is going on here.

Lemma rep' Some1 : ∀ ls fr ba,
rep' ls (Some fr) ba
==> Exists nd :@ node, fr �> nd

* Exists ls' :@ list T, [ls = data nd :: ls']
* match next nd with

| None ⇒ [ls' = nil]
| Some fr' ⇒ rep' ls' (Some fr') ba

end.
Ltac list simplr := repeat (simplr ||
match goal with

| [ls' : list T `] ⇒
match goal with

| [` context [([:: = ls' ++ :: nil] * listRep ls')]] ⇒ destruct ls'

end

| [` context [[nil = ++ ::]]] ⇒
inhabiter ; search prem ltac:(apply himp inj prem); intro

| [` context [[:: ++ :: = ++ ::]]] ⇒
inhabiter ; search prem ltac:(apply himp inj prem); intro

| [H : `] ⇒ generalize (app inj tail' H); clear H ; intuition; subst ; simpl

end).

destruct ba; simpl ; [| sep fail idtac];
generalize (list cases ls); intuition; subst ;
repeat match goal with

| [H : ex `] ⇒ destruct H

end;

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 15

sep fail list simplr.
Qed.

Now we've passed the hairy part of the development, and everything that follows is quite
direct. We de�ne our premise simpli�cation tactic in almost the same way as for Stack. The
idtac; at the beginning of the tactic works around a strange limitation in which tactics Coq
will allow to be passed as arguments.

Ltac simp prem :=
idtac;
simpl prem ltac:(apply rep nil || apply rep' Some1 || apply rep' Some2).

Ltac t := unfold rep; simpl IfNull ; sep simp prem simplr.

Open Scope stsepi scope.

De�nition new : Cmd (fun q ⇒ rep q nil).
re�ne (fr ← New (@None ptr);
ba ← New (@None ptr);
{{Return (Queue fr ba)}}); t.

Qed.

To verify free, we need a trivial fact about rep'. We add that fact as a hint, so that it is
applied automatically during sep's proof search.

Lemma rep' nil : ==> rep' nil None None.
t.

Qed.

Hint Resolve rep' nil.

De�nition free : ∀ q, Cmd (rep q nil) (fun : unit ⇒).
intros ; re�ne (Free (front q);;
{{Free (back q)}}); t.

Qed.

To verify enqueue, we need to make our sole use of induction, proving a lemma about the
e�ect of adding a node to the end of a list.

Lemma push listRep : ∀ ba x nd ls fr,
ba �> Node x (Some nd) * listRep ls fr ba ==> listRep (ls ++ x :: nil) fr nd.
Hint Resolve himp comm prem.

induction ls ; t.
Qed.

Hint Immediate push listRep.

One more lemma is useful. It may be surprising that we feel the need to prove this lemma,
since our t discharges it trivially. Like in so many other similar situations, we prove the
lemma explicitly and add it as a hint to guide uni�cation by eauto.

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 16

Lemma push nil : ∀ (x : T) nd,
==> [x :: nil = nil ++ x :: nil] * listRep nil nd nd.

t.
Qed.

Hint Immediate push nil.

De�nition enqueue : ∀ q x ls, Cmd (ls �� rep q ls)
(fun : unit ⇒ ls �� rep q (ls ++ x :: nil)).
intros ; re�ne (ba ← !back q ;
nd ← New (Node x None);
back q ::= Some nd ;;
IfNull ba Then

{{front q ::= Some nd}}
Else

ban ← !ba;
ba ::= Node (data ban) (Some nd);;
{{Return tt}}); t.

Qed.

The de�nition of dequeue is similar to that of enqueue, and this time we need no new lemmas.

De�nition dequeue : ∀ q ls,
Cmd (ls �� rep q ls) (fun xo ⇒ ls �� match xo with

| None ⇒ [ls = nil] * rep q ls

| Some x ⇒
match ls with

| nil ⇒ [False]
| x' :: ls' ⇒ [x' = x] * rep q ls'

end

end).
intros ; re�ne (fr ← !front q ;
IfNull fr Then

{{Return None}}
Else

nd ← !fr ;
Free fr ;;
front q ::= next nd ;;
IfNull next nd As nnd Then

back q ::= @None ptr ;;
{{Return (Some (data nd))}}

Else

{{Return (Some (data nd))}}); t.
Qed.

End Queue.

CHAPTER 4. MUTABLE QUEUES July 27, 2009 � 17

De�nition t (: Set) := queue.
End Queue.

CHAPTER 5. COMPILATION July 27, 2009 � 18

Chapter 5

Compilation

In an ideal world, we would have a specialized compiler from Coq to native code. More
than one research group is working towards that goal today. For now, we can compile
Ynot developments to reasonably e�cient binaries using Coq's extraction mechanism. Some
examples distributed with Ynot show how to do this, via extraction to OCaml, the primary
extraction language supported by Coq. OCaml's type system is much less expressive than
Coq's, so some Coq programs will not be translated to valid OCaml programs, but Ynot
developments that avoid Coq's more arcane features are likely to be handled properly.

The basic extraction mechanism already does most of the work for us. We just need to
craft build infrastructures around it, including uses of Coq's extraction hints, to map par-
ticular Coq identi�ers to particular OCaml identi�ers. This is especially necessary to realize
the primitive program constructs of Ynot. These constructs must remain as axioms in Coq,
since it is impossible to write imperative programs directly. Nonetheless, we achieve a con-
sistent �nal result by instructing Coq to extract them as particular impure OCaml functions.
The Ynot distribution includes in the src/ocaml/ directory such an implementation of the
primitives that we need.

The "Hello World" example in examples/hello-world/ demonstrates how to build a pro-
gram that uses IO, and the linked-list example demonstrates use of an imperative linked
list ADT. In this tutorial, we will not go into detail on how the build process works, since it
involves no theoretically deep elements. You can re-use our Make�les to produce new pro-
grams to be compiled via OCaml by copying the simple �le structure used for hello-world.

• HelloWorld.v, the Ynot development

• Extract.v, the Coq code to generate an OCaml equivalent

• Makefile, which de�nes some example-speci�c variables and calls out to a shared
Make�le

• ocaml/main.ml, which gives the OCaml code to run for the �nal program, calling the
main entry point from the extracted development

CHAPTER 5. COMPILATION July 27, 2009 � 19

In a directory set up like this, running make builds only the Coq parts, and running make

build generates the �nal executable. The latter target produces a native code executable
main.native and a bytecode version main.byte.

